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(see above). As Kauzmann32'33 has already pointed 
out in connection with the urea denaturation of 
BSA, the numerous disulfide bonds are probably at 
least in part responsible for this limit, and perhaps 
also for the reversibility of the expansion. 

Expansion in Alkaline Solution.—Reference has 
been made a number of times in this paper to the 
fact that expansion of BSA occurs above p~R 10.5 
as well as below pK 4.3. This conclusion is based 
on the decrease in w occurring above pll 10.5, and 
on the behavior of optical rotation9 and fluorescence 
polarization6 above that pYi, which parallels that 
below p~H 4.3. We have made only a few explora­
tory viscosity measurements in this region, and 
have observed both an increase in viscosity and 
time dependence. It is probable that the expan­
sion in alkaline solution will not show the plateau 

observed in Fig. 1, for the higher charge at which 
the first stage occurs should result in a high enough 
electrostatic free energy even at the higher ionic 
strengths so that there is immediate expansion of 
the expandable form. It is possible that the entire 
process in alkaline solution will be more difficult 
to study, because of the readiness with which aggre­
gation initiated by the ionized sulfhydryl group is 
likely to take place. 
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The work described gives expressions relating the deviations between ideal and observed fringe positions in Rayleigh 
diffusion interferograms to the various coefficients describing the concentration-dependence of both the diffusion coefficient 
and the refraction increment; rigorous methods are given for the calculation of differential diffusion coefficients in such 
systems. The expressions have been tested by using them to predict the deviations to be expected in the cases of sucrose, 
glycine and butanol, where adequate concentration-dependence data are already available. Reasonable success has been 
achieved in this prediction. Some of the likely sources of error in Rayleigh diffusion work are examined, and two examples 
are given of a comparison between Gouy and Rayleigh results obtained in the same experiment. 

In diffusion experiments conducted between solu­
tions of two different concentrations C\ and G>, of 
the same solute, it has frequently been found3-4 

that for systems where the concentration-depend­
ence of the diffusion coefficient is relatively small, 
the mean concentration C= (Ci + C2)/2 of the ex­
periment is the concentration corresponding to the 
measured diffusion coefficient, the latter being in­
dependent of the actual magnitude of the concen­
tration increment AC = C2 — Ci. Such experiments 
are therefore taken to yield the differential diffu­
sion coefficient, DQ, corresponding to the mean 
concentration. Recently, however, results ob­
tained on the markedly non-ideal butanol-water 
system by Lyons and Sandquist5 indicated a de­
pendence, albeit small, of the diffusion coefficient 
upon AC at constant C, so that unambiguous values 
of Dc may not be obtained directly in this way. 

Furthermore much interest has arisen recently6'7 

in the question whether the Gouy and Rayleigh 
optical interference methods now in widespread use 
do in fact yield identical results when applied to 
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similar systems; in attempting to answer this ques­
tion, it is clearly important that experimental data 
be analyzed to give results in terms of well-defined 
quantities and that any approximation introduced 
be closely scrutinized and estimated. The work of 
Fujita and Gosting8 has shown how diffusion coef­
ficients measured by the "height-area" method may 
be corrected for concentration-dependence of dif­
fusion coefficient and of specific refraction increment 
to yield the true differential diffusion coefficient; 
the purpose of this paper is to show how parts of 
Fujita and Gosting's8 theoretical development may 
be used to provide a basis whereby the results of 
Rayleigh diffusion experiments upon non-ideal 
systems may be similarly corrected. The work 
has shown, in addition, how the results may be 
treated to give an estimate of the concentration-
dependence of the diffusion coefficient. 

Theory 
(a) Ideal Systems.—For the purposes of this 

analysis, ideal systems are defined as those in 
which both the diffusion coefficient and the re­
fraction increment are independent of the concen­
tration. For experimental systems where concen­
tration is measured as a function of height in the 
diffusion cell, the relevant solution of Fick's9 law 
is, in the ideal case, an expression of the form 

(8) H, Fujita and L. J. Gosting, ibid., in press. 
(9) A, Pick, Fogg. Ann., 94, 59 <18.5o). 
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where C is the concentration a t the point distance 
x (positive downwards) from the initial infinitely 
sharp boundary separating the two solutions, t the 
t ime and D the diffusion constant. As the concen­
trat ion function on the left of equation 1 will be 
extensively employed in what follows, for the sake 
of brevity it will be writ ten g{C); thus the equation 

serves to define this function. Secondly, the re­
duced variable z = x/2\/Dt is introduced, so tha t 
the right-hand side of equation 1 is simply written 
H(z), the symbol H denoting the probability integral. 

The Rayleigh optical sys tem 1 0 - 1 2 used for diffu­
sion experiments yields a record of refractive index 
(in terms of interference fringes) as a function of 
cell displacement; denoting the number of a fringe 
as j (counting from the less concentrated solution) 
and the total number of fringes as / , a ' 'reduced 
fringe number" funct ion/( j ) may be defined by the 
equation 

2±^I=fU) (3) 

The assumption of ideality implies t ha t the re­
fractive index of the solution is a linear function of 
the solute concentration, when the two functions 
g(C) and f(j) are equal, and accordingly 

f(j) — > H(z) 

Tables of probability functions13 are then used to 
obtain 2 from the H(z) values, and knowing x and t 
from the experiment, D may be calculated from the 
equation defining z. This procedure has been used 
by Svensson,14 and particularly by Longsworth15 '16 

for the determination of diffusion coefficients. In 
order to avoid locating the original start ing position 
(z = 0), separations between pairs of fringes are 
usually determined: Longsworth's15 procedure in­
volved keeping Aj approximately constant, so tha t 
fringe 2 out of a system with J = 100 would be 
compared with fringe 52, 4 with 54, etc. 

The direct use of the fringe number function to 
obtain z values is clearly invalid if the refractive 
index is a non-linear function of the concentration; 
the function retains its usefulness, however, for in 
spite of any such effect, it may always be employed 
to define an ideal, normalized displacement z* for 
the fringe numbered,;' by the relation 

f(j) = H(z*) (4) 

and the following t rea tment of concentration-de­
pendence will employ s* as one of the two fundamen­
tal parameters. 

(b) Concentration-dependent Systems.—We 
shall consider the effect on the experimental record 
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of boundary shape of concentration-dependence of 
diffusion coefficient and of specific refraction incre­
ment ; following Fuji ta and Gosting8 we write for 
the former 

D = Di [l + h(C - C) + HC - CY + ] (5) 

where D is the diffusion coefficient a t concentration 
C, Dc t ha t a t C and ki and ki are coefficients re­
lated to, and determinable from, the experimental 
da ta for D vs. C. For the refractive index n of a 
solution of concentration C we write 

n «=»5 + Ri(C - C ) [ I +O1(C- C) + a2(C- C ) 2 + . . . . ] 
(6) 

where Rc, a>\ and o2 are similar coefficients, defined 
by Fuji ta and Gosting.8 

Using series methods mentioned in the general 
t rea tment by Fujita17 of free diffusion when D var­
ies with C, Fuji ta and Gosting8 derived general 
equations18 relating both the concentration and 
concentration gradient to the cell displacement for 
cases where D was a function of C, as given by 5; 
for the integral, concentration case, the result was 

g(C) =*„ + £, ( ~ ) 4>i + 

(k,^y4-2 + k2(^y03 + . . . (?) 

where fa represents the (normalized) ideal concen­
trat ion distribution (thus fa = H(z)), and fa, fa and 
fa, which have been given by Fuji ta and Gosting,8 

are rather complex functions of z, which is itself 
defined in this connection by the relation19 

z = x/2VD~bt (8) 

The use of equation 7 in the form stated to interpret 
Rayleigh diffusion records demands prior knowledge 
of Dc, and, of course, a relation between g(C) and 
f(j); moreover, individual fringe displacements 
from the original x = 0 position would be required. 
Because of experimental limitations, the solution 
desired is one explicit in z, so tha t displacements 
may be paired directly (in this way it is possible to 
utilize the high accuracy with which fringe separa­
tions may be measured). For these reasons, there­
fore, the direct solution of 7 in terms of z was not 
a t tempted; instead an expression was derived in 
the quite general form of the Taylor expansion in 
z, a t cons tan t / ( j ) 

::;' . ,+ [ i , ( & )r ( a 3 ,+ [ l ' (^ ) + 

Y ( S ) + k ^ (5Er1) + *2 (S2) +G2 (£)] + 
. . . . (9) 

The reason for the particular grouping of terms in 
(17) H. Fujita, J. Colloid Sci., 9, 269 (1954). 
(IS) Recently, J. G1IH3 and O. Kedem (J. Polymer Sci., 11, 545 

(1953)) have examined the case of linear dependence of D upon con­
centration, and have given an equation in which the first-order term is 
essentially equivalent to the corresponding term in (7). As their 
treatment was based on an expansion about the diffusion coefficient 
at zero concentration, Do, and it is clearly desirable in this case to have 
solutions about Dc, the relations derived by Fujita and Gosting8 have 
been preferred in the subsequent derivations in this paper. 

(19) Although this restricted definition of z should strictly be ac­
knowledged by the addition of some distinguishing mark to the symbol, 
this will be omitted for the sake of clarity, it being understood, in all 
that follows, that * is always denned by equation 8. 
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this equation20 will be apparent shortly; the restric­
tion of constant (f)j in this expansion implies that 
fringe displacements are being expressed in terms 
of z*, the displacement that the same fringe would 
have in an ideal diffusion system (ki, ki, a,\, a2. . . all 
zero) characterized by possession of the same total 
number of fringes J and governed by a diffusion 
constant D = Dc-

The required derivatives are obtained by making 
use of the generality 

KZyJm W ( J ) / A i>J Jx 
(10) 

where y is one of the four variables k\, ki, fli, a*. This 
requires an explicit relation between/(j), z and the 
variables "y"; such an expression may be derived 
from equations 6 and 7 and the definition of /(J), 
equation 4, in the following way. 

Since the fringe number is a direct measure of 
refractive index difference, we may write 

2j - J _ 2(w - n) 
f(j) J 

(11) 
An 

where fi — («i + «2)/2 and Aw = ni — Mi, Mi and n* 
being the refractive indices of solutions of concen­
trat ion Ci and G-

Equation 6 may be rewritten in terms of g{C), 
utilizing equation 2 

n = «c + Ro (TX*"+«(¥)««'• + 
/ I 2 (f)wo.-+...] (12) 

also we have 

ni = nc — Rc [~2 j \ 

and 

112 = «6 + -Rc f -g- J 1 + a, 

(¥); 
*(¥) 

(¥) + 

+ 

+ 
so that 

nc + oiiJo I -jT (¥)' + 
and 

An «.(¥)[• + -(¥)' + ...] 

(13a) 

(13b) 

(14a) 

(14b) 

Combining equations 11, 
fying 

12 and 14, and simpli-

Kj) = g{C) D + 
ai ( % C ) 2 f [ g ( C ) ] 3 - [g(C)]| + (15) 

T h e expression required is then obtained on sub­
stitution for g(C) from equation 7 

(20) Although not indicated in equation 9 it is, of course, implied 
that each partial derivative is to be taken (i) at constant f(j) and (ii) 
holding all variables constant other than the particular one under con­
sideration; furthermore, the limiting value, as all the variables ki, a\, 
etc., tends to zero, is required. Thus the complete specification of the 
first term in fa would be 

LUw f(j), kit a,, «2 • Jki,ki,ai,at ...—*•() 

/ U ) = *o + ( ~ ) [hfr + ai(0o2 - D] + 

(ACN2 

~2 ) I*!2** + 2a^i0o0i + &£i + a2(<Ao3 -

<£„)] + . . . . (16) 
The reason for the particular grouping of terms 

in equation 9 is now apparent ; it should be observed 
t ha t as equation 16 is complete up to and including 
terms of order (AC/2)2 , only the derivatives indi­
cated in equation 9 need be considered if the ex­
pression for z is to be accurate to the same limit 
(terms of order (AC/2)3 and higher are negligible un­
der the experimental conditions generally adopted, 
where J is not much greater than 100). 

Equat ion 16 may be differentiated simply to 
yield each of the derivatives indicated in equation 
10. In the following t rea tment use will be made of 
the equalities 

4>o = H{z) 

dz 

AH'(z) 
" Az 

- * ' « ( - ^ e ~ " ) 

= H"(z) = - 2zH'(z) 

LH7WJ 

(17a) 

(17b) 

dz 
2s 

H'(z) 

(17c) 

(17d) 

It will be convenient to defer precise definition of 
the functions 0i, 02 and & until the derivatives have 
been obtained. 

Owing to the restrictions discussed above,20 a 
single expression for the derivative of (16) with re­
spect to z is applicable in all four cases; the expres­
sion is 

(m ...—«+(¥)[* m+ 
2o,ff(*)ff'(s)] + ° [ ( T T + •••] (18) 

which for subsequent purposes is more conveniently 
written 

(MUl) H'{z) 

/ACN T k, (defy 
\ 2 /Uw-

1 + 

-1) + 2C1H(Z)] I + . . . (19) 

For the variable kit equation 16 gives the expression 

(VU)\ (MW) . (f) * + 

( ,] + (20) 

Combining equations 17 and 19 

KbkJm.*,.*.*, ) \ 2 J H'< h + /Acyrzk^i 
\2 ) U-V(Z) 

2aiH(z)4>il) v L {AC\[Jj (d<fn\ _̂  
"HWJS x r ~ \ 2 JiH1Cz)VdZ) • 

2o,H(s)] \ + ••• 

\ 2 J H'(z) + \ 2 J L[Hr(z)]' V dz/ 
kl*l] 4. 
f'(z)j + • • • 

2 ^ 6 , 
H'\ 

(21) 

(22) 

The expression for the second derivative may be 
obtained from equation 22, acknowledging tha t all 
functions of z are implicit functions of ki 
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£>«i 
- + <h • 

Lff'wJ 
d*i + 

(23) 

(W) = _ (*£\ 

/ A c y r 0i / & M _ _202_n 
V 2 ; L[H'(z)]*\te) H'(z)j ^ 
The expression in the first bracket may be simplified 
by making use of (17d) and the relation 

(JL) = (1) (*L) 
\ a * i / / w \2>2//(j) \dfei//<i> 

when we obtain, on simplification 

f^A = / ^ v r2z^8 + 2^2 / ^ 
VdAiV \ 2 / L [«•'(«)]' ff'(a) V 2>3/ 

(24) 

208 "I 

#'(z)J + (25) 

Denoting the function <j>i/H'(z) as i?(z), we ob­
tain the limiting values of the derivatives from 
equations 22 and 25. 

\ O K l / /(J).*i.oi,O2 \ <J / ' /(J) 
* l - * 0 

(26) 

and 

/C;)-Ar2,oi,02 
4l—»-0 

2i?(z) /&0A 2^2 "I , , 
'im \Tz) ~im] + ••• (27) 

For simplicity, the function of z in the outermost 
square brackets on the right of equation 27 will be 
denoted S(z). 

For Ci, similar reasoning gives 

+ 

+ (28) 

(^) = (¥) «w - 1^ 
(^yVh1H(Z)* 

which on combining with equation 19 and simplify­
ing gives 
(*L\ = / A C \ n - [ # (« ) ] n _ 
\aoi//(j).*..*8.«! \ 2 / L ff'(2) J 

( f )2 J2 0 1Al.)[L^L1] +2klH(z)R(z) + 

A_ (*b\ H ~ ^ ) I 2 I t + (29) 
H'( 

The second-order derivative is obtained in the 
same manner used for the case of b2z/dkr, making 
use of an expression in a,\ of the form of equation 24. 
Defining 

1 - [H(z)V 
U(z) = 

H'z 
(30) 

the results for the limiting values are 

(£) = (T) ™ -
\OOi//(J),ti,*2,oj V ^ / 

(31) 

and 

(IrO - ( fT ^ [*"« -
\ o a i V / ( J ) . * i . * 2 . a > \ ^ / 

4tf(2)] + .. = ( ^ ) V ( z ) + . . . (32) 

An expression for the cross derivative d^z/daid&j 

may be obtained from either of equations 22 or 31 
(giving the same result) 

XSiSkJfW.t,.« = ~ C T ) &T(2) L^7W CaJ/ + 

(<.,,*!)-*-0 

2zi?(s)~] + . . . (33) 

The two remaining first-order derivatives are 
obtained very simply in a similar fashion 

(te\ = _ (*cy _*•_ + 
\bkij/tj),*i,ai,oj \ 2 / iT'(z) 

& 2 — ^ O 

- ( ^ ) 2 T ( S ) + . . . (34) 

(SO - ( ¥ T ^ "« + ••• (35) 
and 

The limiting values of the derivatives given in 
equations 26, 27, 32, 34, and 35 in no case contain 
any terms involving any of the parameters fli, k\, 
etc., and are therefore identical with those required20 

in equation (9); for the derivative (bz/da,) only 
the first term in equation (31) is required, the sole 
cross-term coefficient being that given in (33). For 
simplicity, therefore, the function V{z) is defined: 

™ = Sg) &) + 2^ (36) 

so that the results of this treatment may conveni­
ently be expressed in terms of the summation: 

Z=Z* + 

(f)I¥ 
(¥) l<nU(z*) - It1R(Z*)] + 

2 / 

W(z*) aikiV(z*) + a2U(z*m(z*) 

S(z*) - k2T(z*)~] k_l 
2 + (37) 

(This expression may be checked by writing the 
error function z* as Taylor expansion in z, when 
equation 16 is obtained.) 

It should be noted first that as all derivatives 
were obtained as the relevant coefficient vanished, 
all terms are in z* and not the reduced displace­
ment z. Secondly, both the functions U(z) and 
R(z) (see below) are symmetrical about z = 0— 
t.e., for example U(z) = U(—z). This is a most 
important conclusion, for it enables the first-order 
effects of concentration-dependence to be elimi­
nated by comparing fringe displacements sym­
metrically about/(j) = 0—i.e., in a 100 fringe sys­
tem, fringe 2 would be compared with 98, 4 with 96, 
etc. As the second-order effect is negligible when 
either (AC/2) or the constants are small (as is very 
frequently the case for simple substances) this pro­
cedure will give Az values which are identical with 
the corresponding Az* values; the differential diffu­
sion coefficient at the mean concentration may then 
be calculated directly, using equations 4 and 8; such 
a determination does not involve the use of any data 
concerning concentration-dependence of either the 
refraction increment or the diffusion coefficient. 
In certain special cases, or where the concentration 
increment is large, errors in Dc will still result from 
the application of the symmetrical "comparation" 
procedure, and the relevant concentration-depend-

file:///bkij
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ence coefficients must be employed if a rigorous 
analysis is desired.21 

The Determination of Concentration-depend­
ence of D.—For systems where ai is negligible, and 
the concentration increment fairly small, the con­
stant ki may readily be determined from the rela­
tion between the observed and ideal fringe dis­
placements. For example, equation 37 applied to 
such a case gives for the displacement of two 
fringes j i and J2 

(* - Z1) - (zf - zf) = - fa ( ^ ) [R(z*) -

R(z*)) + ... (38) 

where z* is obtained from H(z*) = (2ji — J)/J, etc. 
The requisite data for this determination therefore 
are: knowledge of the fringe number j and the total 
number of fringes / , the concentration increment 
AC (if ki is to be expressed in concentration units), 
the function R(z), and finally the experimentally 
observed reduced fringe separation Az. The latter 
may be determined from the known time (subject 
to suitable zero time correction) and the differential 
diffusion coefficient calculated from the symmetrical 
separations. However, knowledge of the diffusion 
coefficient and time is not a pre-requisite, for it may 
be observed that 

\ t ( g f ^ f ) = 2 V 5 * (39a) 

is a constant for a particular time; here the summa­
tion covers n such quantities as {xw — Xi)/{z*% — 
Z*), (xn — Xi)/(z*te — zf), etc., in a 100-fringe sys­
tem. 

Equation 39a, involving the cell displacements x\ 
and Xi, is more useful if expressed in terms of the 
(arbitrary) comparator readings Xi and X2 for the 
fringes 7i and J2, thus 

\ i (tf̂ #) -2MVmt - Y> (39b) 

Here M, the camera plate-to-cell magnification, is 
defined as AX/Ax. F t is, of course, the fundamen­
tal characteristic of the fringe pattern for the par­
ticular time. 

Thus, employing equations 8 and 39b, a substi­
tution may be made for z in equation 38, giving the 
relation 

^f^ - (zi - zf) = - fa ( ^ ) [R(Zf) -

R(zf)] + ... (40) 
and ki may accordingly be determined from the 
slope of a plot of the difference function on the left-
hand side vs. the difference in R(z*) values (hence­
forward denoted AR(z*)) on the right. Within 
limitations discussed below, departure from linear­
ity of this plot indicates either that one of the other 

(21) The parallel with the case of diffusion coefficient determination 
from refractive index gradient measurement is instructive. Thus 
Fujita and Gosting8 find that the "height-area" value DA differs 
from Dc only by a second-order quantity, so that DA values will in 
general approximate to Dc's, but further data are required before the 
correction factor can be applied. The Rayleigh fringe method may 
have an advantage over the Gouy in this Connection, as concentration-
dependence of D produces a more easily observed effect, so that an 
indication is obtained at once as to whether second-order effects should 
be considered. 

coefficients ait ki, etc., is significant, and hence that 
other data must be considered, or that the term in 
ki2 is significant. The curve in the central region, 
about Ai? (z*) = 0, will generally be sufficiently 
close to linear to give a preliminary value of ki, 
when computations of (ki2/2)S(z) will immediately 
reveal the significance or otherwise of this term. 

Where it is known that a\ is significant and a2 
negligible, an alternative to the direct computa­
tion of aiU(z) is to compute g(C) values from the 
f(j)'s and ai when the three terms in Oi in equation 
37 drop out, leaving a more easily manipulated re­
lationship involving only ki and ki2. This ap­
proach is further discussed in the results section. 

Values of the requisite functions are given in the 
subsequent tables. As it is anticipated that the 
function R(z) (to be used in determinations of ki 
when other factors are negligible) will be of most 
interest, values are given to five significant figures 
for intervals of 0.02 in z over the range 0-1.5; linear 
interpolation then leads to errors not exceeding one 
in the fourth place. Over the range 1.5 to 3.0 where 
the function is given only at intervals of 0.1 in z, 
linear interpolation will not produce errors of more 
than one in the third place (where given). I t may 
be noted that R(z) —*• — °oasz—> ± <». 

The other functions are given only to four signifi­
cant figures, at intervals of 0.1 in z. Smooth 
curves drawn through the points given will in gen­
eral allow a function to be estimated to three-place 
accuracy, which will be sufficient for many cases. 

Experimental 
In all this series of experiments, the Gouy diffusiometer 

equipment described by Gosting, et al.,22-2S was employed 
as the basic apparatus. The conversion to the integral, 
Rayleigh, form of apparatus was effected by (a) rotation of 
the light source about the optic axis to give a vertical slit, 
(b) substitution of a vertical pair of masking slits (each of 
which was 1" long X 1Ae" wide, separation between centers 
1Zt") for the Gouy masking devices, and (c) the insertion of 
a cylindrical lens with axis horizontal between the cell and 
the camera. 

The vertical masking slits were fixed permanently to the 
cell frame, on the side nearer the source slit, while additional 
masking slits could be moved over them, by a rack and 
pinion device, to enable Gouy fringes and relevant reference 
fringes to be photographed for the same experiment. In 
order to produce a reference pattern, two pairs of short 
vertical slits were employed, displaced to one side of, and 
extending above and below, the main pair. This arrange­
ment (illustrated in Fig. Ia) thus placed one of the main 
vertical slits opposite the cell, the other opposite its extension 
window,16 while light traversing the upper and lower pair of 
reference slits came only through the water of the thermo­
stat bath; by this means the extension fringes a t the edges 
of the cell fringe pattern (a typical example is shown in 
Fig. Ib) were produced. 

The cylindrical lens unit consisted of two similar plano­
convex lenses,24 each of focal length 130 cm., mounted on a 
single stand; each lens could be adjusted independently 
both for vertical motion and for rotation about the optic 
axis. The lenses had a minimum separation between the 
inner (curved) surfaces of approx. 1 mm. The stand was 
clamped to the lathe bed which also held the camera. 

The focusing of the cylindrical lens unit is rather critical; 
the procedure finally adopted was as follows. The plane 
surface of the lens adjacent to the camera was adjusted to be 
parallel to the bath window, using a telescope with reflecting 

(22) L. J. Gosting, E. M. Hanson, G. Kegeles and M. S. Morris, 
Rev. Set. lnstr., 20, 209 (1849). 

(23) L. J. Gosting and P. J. Dunlop, T H I S JOURNAL, 78, 5073 
(1953). 

(24) Obtained from Frank Pearson Associates, New York. 
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.00 

.02 

.04 

.06 

.08 

.10 

.12 

.14 

.16 

.18 

.20 

.22 

.24 

.26 

.28 

.30 

R(Z)' 
+ 0.16102 

.16086 

.16037 

.15957 

.15845 

.15699 

. 15522 

.15315 

.15075 

.14806 

.14503 

.14168 

.13806 

.13413 

.12990 

.12537 

T A B L E I 

F U N C T I O N S O F Z F O R C O N C E N T R A T I O N - D E P E N D E N C E E Q U A T I O N S 

R(z) z R(z) z R(z) z 

±0.32 
.34 
.36 
.38 
.40 
.42 
.44 
.46 
.48 
.50 
.52 
.54 
.56 
.58 
.60 

+0.12056 
.11546 
.11009 
.10443 
.09851 
.09231 
.08587 
.07916 
.07219 
.06500 
.05757 
.04990 
.04201 
.03390 
.02557 

±0,62 
.64 

.70 

.72 

.74 

.76 

.78 

.80 

.82 

.84 

.90 

+ 0.01703 ±> 
.00828 

- .00063 
.00974 
.01903 
.02851 
.03815 
.04797 
.05792 
.06803 
.07828 
.08867 
.09919 
.10984 
.12059 

0.92 
94 

98 
00 
02 
04 
06 
08 
10 
12 
14 
16 

1.18 
1.20 

-0.13148 
.14250 
.15353 
.16472 
.17600 
.18736 
.19879 
.21028 
.22188 
.23354 
.24525 
.25700 
.26884 
.28071 
.29258 

± 1 . 2 2 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

R(z) 

-0.30453 
.31654 
.32856 
.34056 
.35267 
.36478 
.37686 
.38899 
.40113 
.41330 
.42547 
.43763 
.44975 
.46192 
.47420 

±1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 

60 
70 
80 
90 
00 
10 
20 
30 
40 
50 
60 

2.70 
2.80 
2.90 
3.00 

R(z) 

-0.5350 
.5955 
.6557 
.7151 
.7746 
.8334 
.8922 
.9491 

1.004 
1.06 
1.11 
1.18 
1.23 
1.30 
1.36 

+ 
0.00 

.10 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 

.00 

.10 

.20 

.30 

.40 

1 
1 
1 
1 
1 
1.50 

U(z>* 

+0.8862 
.8838 
.8767 
.8650 
.8491 
.8297 
.8071 
.7820 
.7551 
.7270 
.6983 
.6694 
.6409 
.6130 
.5860 
.5603 

" R(z) = <f>i/H'(z), where <fr 
tions 30 and 36, respectively. 

S(z)' 

0.0000 
+0.0042 

.0075 

.0092 

.0086 

.0051 
- .0019 

.0115 

.0248 

.0413 

.0606 

.0825 

.1062 

.1320 

.1592 

.1875 
= - l/,{[H(z)Y 
' S(z) is denned 

T A B L E 

T(z)d 

0.0000 
+0.0097 

.0173 

.0208 

.0187 

.0099 
- .0064 

.0303 

.0617 

.0998 

.1440 

.1931 

.2463 

.3025 

.3611 

.4211 

II 
V(z) * 

0.0000 
-0.0673 

.1320 

.1918 

.2453 

.2925 

.3343 

.3728 

.4111 

.4526 

.5013 

.5608 

.6344 

.7252 

.8353 

.9667 

W(z)' 

0.0000 
-0.2413 

.4735 

.6881 

.8782 
1.039 
1.168 
1.264 
1.329 
1.366 
1.379 
1.371 
1.348 
1.313 
1.271 
1.223 

60 
.70 
.80 
90 
00 
10 
20 
30 
40 
.50 
60 
,70 
.80 
90 

3.00 

U(z) 

+0.5358 
.5128 
.4910 
.4708 
.4519 
.4338 
.4169 
.4008 
.3881 
.3765 
.3609 
.3490 
.3377 
.3272 
.3174 

/A2[H(z)\* - (z' - °/2z)[H(z)]*H'(z) - (z 

+ zH(z)H'(z) + 1MHXz)]1 - 1}. b U(z) and V(z) are denned by equa-
by equation 27 where dfr/dz = 1/iH'(z)[(2z,i - Z)H(z) + zH'(z)]. fc = 

2^H(z) j . * T(z) = <t»/H'(z) 

(6\/3/2x - 2)H(z) I. • W(z) is denned by equation 32. 

Gauss eyepiece. Then using four vertical slits in the cell 
position (source slit also vertical), this lens was twisted about 
the optic axis until the interference pattern viewed from the 
camera was best defined (the use of four slits in this manner 
gives a complex interference pattern which is considerably 
more sensitive to maladjustment than the first-order Ray-
leigh pattern obtained from two slits). This single lens was 
then placed at the correct height above the lathe bed by fo­
cusing a cross hair placed at the center of the main spherical 
lens upon the optic axis. The second cylindrical lens was 
then put in place and adjusted similarly for rotation and 
height. Finally, the combined unit was focused by placing 
a very narrow horizontal slit in the cell frame suspension at 
exactly the cell-center position, and using a Toepler "schli-
eren" knife edge at the camera end. Kodak "CTC" 
panchromatic half-tone plates were used throughout; the 
mercury green 5461 A. line was isolated as described.23 

Diffusion experiments were conducted according to the 
usual procedure.16'22 Photographic records were obtained 
of the fringe pattern (a) after the sharpening capillary was 
inserted and before sharpening was commenced, (b) after 
the boundary was fully sharp, 50-100 ml. of liquid being 
withdrawn (these records (a) and (b) suffice to determine 
the fringe fraction), (c) immediately after the capillary was 
withdrawn and the cell closed off (both bottom and top 
sections of the cell could be moved, but not the central sec­
tion)—the "diffusion reference" pictures, and finally, (d) 
as diffusion proceeded; 8 exposures, at approximately regu­
lar intervals, were generally taken allowing about 25% of 

S)H(Z)[H1W* ~ lMH'(z)]' 

where fe V,J2[ff(z)]» + 3z[H(z)]W(z) + 3H(z)[H'(z)]2 - —£? H(V3z) + 

the total time of the diffusion to elapse before the first ex­
posure was made. The diffusion process was generally 
allowed to proceed until y/t)t was approximately 0.3 cm. 
In addition, a separate record was obtained of the cell and 
reference fringes when the cell was filled with water alone: 
this is termed the "cell blank." 

AU records were measured with a Gaertner Toolmaker's 
Microscope fitted with projection screen, described by 
Akeley and Gosting.25 After lining up the plate with the 
aid of the reference fringe patterns, the fringe fraction is de­
termined from records (a) and (b), approximately four re­
cordings being made of the position of each of the four 
minima in the central part of the diffraction envelope at 
(plate) distances about 3-5 mm. either side of the center. 
Record (a) gives the small permanent displacement of the 
upper part of the envelope with respect to the lower, and 
record (b) the displacement corresponding to the fringe frac­
tion. The fringe separation with this system is 260 n and 
measurements may be made to approximately 2 n, leading 
to a possible accuracy of about 1% in the fringe fraction. 
Secondly, the cell blank is measured to give a record of the 
displacement SR of one cell fringe, as a function of distance 
from the top of the cell, with respect to the mean position of 
the two central reference minima (see Fig. Ib). The "cell 
deviation plot" so obtained which should be constant for a 
perfect optical system, actually varied by about 20-25 it 

(25) D. 
(1953). 

F . Akeley and L. J. Gosting, T H I S JOURNAL, 78, 5685 
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D 3 Q 
•1 L 

A 
Fig. 1.—A, masking diaphragm for production of Rayleigh 

interferograms: (1) slit opposite diffusion channel; (2) slit 
opposite extension window; (3,4) pairs of slits producing 
reference patterns. 

1 

along the length of the cell fringes. It is somewhat analo­
gous to the "S" correction employed in the Gouy procedures. 
Finally the diffusion records are measured: a few measure­
ments'on the diffusion reference picture in a region remote 
from the boundary serve to relate the displacement of the 
solvent fringes in the particular experiment (denoted 8 ' E ) to 
the cell deviation plot, the latter being considered non-
varying for all experiments conducted with the same cell 
assembly. That is, S'R, the displacement for a particular 
experiment, may differ from SR, but it is found that this 
difference is independent of the distance along the cell 
fringes, so a graph of SK VS. the cell coordinate may be em­
ployed for all experiments, when corrected by the small 
discrepancy between SR and S'R. This rather complicated 
procedure was designed to enable the reference point for the 
fringe measurements (e.g., the zeroth minimum, Fig. Ib) to 
be selected in a reproducible manner from experiment to 
experiment, while avoiding the laborious task of obtaining 
a correction curve of S'R VS. cell coordinate in each case. 
Reproducibility in this respect is important, as an error of 
3 or 4 M (which may easily be made in any single setting of 
the comparator cross axis motion) will produce serious errors 
in concentration-dependence determinations. 

The diffusion exposures, after lining up and recording the 
reference minima positions as above, were measured up in 
the conventional manner,15 but with constant reference to 
the S'R correction values: e.g., if measurements were re­
quired o n j = 1.00, 2.00, 3.00 . . ., the first minimum would 
be approximately located, the <5'R value appropriate to the 
distance from the end of the cell fringes obtained from the 
correction graph, and the cross axis motion of the compara­
tor set accordingly. This minimum would then be located 

accurately. The positions of successive minima as they 
coincide with the cross hairs may then be recorded, the cross 
axis setting being altered as necessary: a variation of S'R 
of up to 2 jj. is tolerated without alteration of the cross axis. 
In practice this means that the cross axis setting must be 
adjusted for every whole fringe from 0.5 to 3.0, and then for 
every 10th fringe; the outer fringes, having a much lower 
slope (see Fig. Ib) than those nearer the center, are very 
much more sensitive to small variations in SR. The im­
portance of this continuous adjustment, if use is to be made 
of the outer fringes, must be emphasized strongly; the varia­
tion in SR though corresponding only to about Vio of the 
fringe separation and thus implying that the optical quali­
ties are reasonably good, will nevertheless introduce serious 
errors into the measurement of fringe separations, if not 
allowed for. 

For most purposes the cross axis reading is altered as the 
J/2 position is passed so that alignment is now on the Jth 
minimum; this results in readings being obtained for (ex­
actly) equal and opposite / (J ) values, so that only one set 
of z* values has to be looked up. 

Diffusion coefficients were determined by calculating the 
regression of (FtO2 upon t' by the method of least squares, 
thus 

n- = -L d[ (FtO2I 
c 4M At' 

In this equation, F1 ' , is the quantity corresponding to Ft, 
defined by equation 30 but referred to t', the time elapsed 
after boundary-sharpening ceased; as this method elimi­
nates the need to consider "zero t ime" corrections,28 the prime 
notation will henceforth be omitted, it being understood 
that all t and Yx values quoted are strictly t' and F t ' , re­
spectively. 

This procedure was adopted as being most consistent with 
experimental practice, as it was considered tha t (a) all 
values of t are equally reliable, (b) errors are located almost 

exclusively in Yt, (c) errors in F t are approximately pro­
portional to its magnitude. 

The magnification factor, M, is equivalent, in the Ray­
leigh method, to the " b " distance25'27 in the Gouy and the 
accuracy of its determination, in any attempt at comparison 
of the methods, is obviously of first importance. In these 
experiments, the magnification was determined by placing a 
horizontally graduated reticle in the position optically 
equivalent to the cell-center, narrowing the vertical slit 
opposite the graduations to ~ 0 . 5 mm., and photographing 
the resultant image; the reticle having very narrow gradua­
tions was measured to the full accuracy of the comparator, 
and the recorded image to about 5 /*. A series of 28 corre­
sponding pairs of arbitrary comparator readings were thus 
obtained, the magnification being determined from the re­
gression of the image values upon the object values. A 
subsequent check of the M values so obtained showed that 
errors in the position of the image lines did not generally 
exceed the known error of measurement. As the outermost 
reticle graduations were separated by ~ 2 . 5 cm. giving a 
separation to the corresponding image marks of ~ 5 . 5 cm., 
the average error of a single determination should not ex­
ceed about 1 in 5000, and the "best value" corresponding 
approximately to 27 such pairs should certainly be more re­
liable than this. The reproducibility of duplicate deter­
minations confirmed this estimate. 

Materials and Solutions.—The sucrose and urea were part 
of the same samples previously described.25 The glycine 
(Pfanstiehl) was used as received; the butanol was the cen-

(28) L. G. Longsworth, T H I S JOURNAL, 69, 2510 (1947). 
(27) G. Kegeles and L. J. Gosting, ibid., 69, 2516 (1947). 

B, Rayleigh interferogram with reference patterns: (1,2) interference minima in region conjugate to homogeneous 
solvent, either of which mav be taken as the "zeroth" fringe; (3) arrow indicates direction of cross-axis motion. 
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T A B L E I I I 

ANALYSIS OF FRINGE DATA FOR 1.5% SUCROSE 

AC = 1.4880 g./lOO ml., C = 0.7440 g./lOO ml., J = 97.80, t = 15,570 sec , T = 25.0O3
0 

1 

Fringe 
3i 

0.5 
1.0 
1.5 
2 .0 
3.0 
4 .0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
12.0 
14.0 
16.0 
18.0 
20.0 
24.0 
28.0 
32.0 
36.0 
40.0 

« Yt = 
column 8 

2 

No. 
i« 

97.3 
96.8 
96.3 
95.8 
94 .8 
93.8 
92.8 
91.8 
90 .8 
89.8 
88.8 
87.8 
85.8 
83.8 
81.8 
79.8 
77.8 
73.8 
69.8 
65.8 
61.8 
57.8 

3 

Separation 
X2 — Xi 

cm. 

4.7410 
4.2768 
3.9886 
3.7744 
3.4513 
3.2118 
3.0153 
2.8483 
2.7029 
2.5716 
2.4520 
2.3420 
2.1434 
1.9676 
1.8090 
1.6621 
1.5245 
1.2724 
1.0419 
0.8261 
0.6220 
0.4250 

4 

Ideal dis­
placement 
s*(= —2*) 

- 1 . 8 1 5 8 
1.6391 
1.5283 
1.4457 
1.3230 
1.2306 
1.1555 
1.0914 
1.0353 
0.9850 

.9393 

.8972 

.8214 

.7540 

.6928 

.6364 

.5838 

.4872 

.3990 

.3165 

.2382 

.1627 

5 
Yt" = 

X2 - Xi 

cm. 

1.3055 
1.3046 
1.3049 
1.3054 
1.3043 
1.3050 
1.3048 
1.3049 
1.3054 
1.3054 
1.3052 
1.3052 
1.3047 
1.3048 
1.3056 
1.3059 
1.3057 
1.3058 
1.3056 
1.3051 
1.306 
1.306 

6 

i t ' 

57.8 
61.8 
65.8 
69.8 
73 .8 
77.8 
79.8 
81.8 
83.8 
85.8 
87.8 
88.8 
89.8 
90.8 
91.8 
92.8 
93.8 
94.8 
95.8 
96.3 
96.8 
97.3 

7 
Separa­

tion 
Xa' — Xi, 

cm. 

2.5886 
2.4556 
2.4134 
2.4132 
2.3677 
2.3719 
2.3426 
2.3315 
2.3371 
2.3590 
2.3972 
2.3978 
2.3560 
2.3334 
2.3258 
2.3348 
2.3644 
2.3560 
2.4031 
2.4013 
2.4432 
2.5774 

8 

Xi' — Xi 
(zf)' - ai, 

cm. 
1.3084 
1.3080 
1.3082 
1.3082 
1.3080 
1.3073 
1.3073 
1.3067 
1.3061 
1.3059 
1.3053 
1.3056 
1.3043 
1.3041 
1.3036 
1.3030 
1.3031 
1.3015 
1.3027 
1.3017 
1.3014 
1.3027 

9 
Az = 

X, ' - X1 

Yt 

1.9834 
1.8815 
1.8491 
1.8490 
1.8141 
1.8173 
1.7949 
1.7864 
1.7907 
1.8075 
1.8367 
1.8372 
1.8052 
1.7879 
1.7820 
1.7889 
1.8116 
1.8052 
1.8413 
1.8399 
1.8720 
1.9748 

10 

Az* = 
(z?)' - Zf 

1.9785 
1.8773 
1.8448 
1.8447 
1.8102 
1.8144 
1.7919 
1.7842 
1.7893 
1.8064 
1.8365 
1.8365 
1.8064 
1.7893 
1.7842 
1.7919 
1.8144 
1.8102 
1.8447 
1.8448 
1.8773 
1.9785 

11 

Aa — Aa* 
(X 10') 

( + 4 9 ) 
(42) 
(43) 
(43) 
(39) 
29 
30 
22 
14 
11 
2 

- 7 
12 
14 
22 
30 
28 

(50) 
(36) 
(49) 
(53) 
(37) 

12 

AR(z*) 

+0.8155 
.6970 
.6127 
.5399 
.4362 
.3432 
.2760 
.2129 
.1510 
.0886 
.0230 

- .0230 
.0886 
.1510 
.2129 
.2760 
.3432 
.4362 
.5399 
.6127 
.6970 
.8155 

1.3051 (average of Yt values in column 5, omitting first two and last five values). Average value of quantity in 
, omitting first two and last two values = 1.3051. 

ter cut from a fractional distillation of dried (CaSOO Baker 
C p . material. AU solutions were made up by weight, us­
ing calibrated weights; the density of solid glycine was 
taken as 1.601 and of butanol at 25° as 0.8055 g./ml. The 
solution density data of Gosting and Morris3 for sucrose, 
Costing and Akeley28 for urea, Lyons and Thomas4 for gly­
cine and Lyons and Sandquist6 for butanol were employed 
in determining corrected concentrations. 

In several experiments, parallel records of the Gouy 
fringes were obtained so that a direct comparison of the two 
methods was possible; diffusion coefficients were calculated 
in the conventional manner.3 

Results 
Most interest in this work must lie in the accu­

racy with which F t and, hence, differential diffusion 
coefficients, may be determined, and in the ability 
of the theory to predict deviations in the diffusion 
of non-ideal solutes. The following experimental 
results have been chosen for detailed description, as 
they demonstrate both the potentialities and limita­
tions of the Rayleigh method in these respects. 

(a) Sucrose.—Table III summarizes the way 
in which experimental observations are arranged 
for the calculation of both Dc and kx. Similar 
tabulations are made for each exposure. Columns 
1 and 2 give the fringe numbers for which record­
ings were made, column 6 is identical with j2 in the 
reverse order. Column 3 gives the corresponding 
measured separations, and column 4 the ideal dis­
placements calculated from the fringe numbers by 
use of equation 4. These are combined to give the 
F t values in column 5, and it is immediately evident 
that a very high degree of constancy of F t is ob­
tained. If the experiment were to be used solely 
for the calculation of Dc, measurements would 

(28) L. J. Gosting and D. F. Akeley, T H I S JOURNAL, 74, 2058 (1952). 

have been concentrated in the region Jx 10-24 (with 
jt 87.8-73.8) where fewer precautions are necessary 
to obtain accurate measurements, but the values 
given have been chosen to show that the sym­
metrical arrangement allows reliable determinations 
of the fringe separation to be made for the outermost 
fringes, even down to the region j = 0.5. These re­
gions, while the least easy to measure up, are very 
important in the analysis of deviations from ideal 
behavior due to the presence of impurities in the 
solute.29 

Column 7 gives the separations obtained when 
the same comparator figures are arranged non-sym-
metrically, keeping Aj more nearly constant, after 
Longsworth15 (X2 is the comparator reading for 
fringe jV), while column 8 gives the corresponding 
normalized values equivalent to F t . Here the 
skewness of the boundary is clearly demonstrated, 
although the average of all values is the same as F t. 
The remaining figures refer to the determination of 
ki, the first-order coefficient of concentration-de­
pendence of the diffusion coefficient. Column 9 
gives the result of normalizing the non-symmetrical 
separations (column 7) through division by F t, to 
give an estimate of Az (equations 39b and 40), 
while the corresponding Az* values (obtained from 
combining the values given in column 4 with 
(z*)', the value given on reading the column up­
wards) are given in column 10; the difference be­
tween these two quantities is given in column 11 
(the figures here are equivalent to experimental 
deviations in microns when F t = 1.00 cm.) while, 

(29) J. M. Creeth, report presented to the 126th National Meeting, 
American Chemical Society, New York, N. Y., Sept. 17, 1954, and to 
be published. 
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finally, column 12 gives the appropriate Ai?(z*) 
values obtained from the z* values and Table I. A 
plot of (Az — Az*) vs. AR{z*) now reveals that while 
the values corresponding to the inner fringes lie on a 
fair straight line, those for the outermost fringes 
are considerably displaced from the line, and are 
bracketed to indicate their unreliability. 

As the experiments described below will show, 
this is not evidence of a failure in the theory, but 
rather of the limitations inherent in the procedure 
of comparing fringes of greatly differing slopes. 
Denoting the error in 5R (experimental section) as 
e, the resulting error e' in z will be given by the rela­
tion 

e' = ./H'{z) 
As H'{z) tends to zero for high z values, the error e' 
becomes excessively high: for the outermost points 
in this case, t' = 25 e. As e can hardly be less than 
1 or 2 H, it is clear that comparisons involving these 
fringes will be highly unreliable, particularly in the 
relatively unfavorable case of sucrose, where the 
expected deviations are small. (It should be 
noted that this error is independent of ki so that 
determinations will become progressively more ac­
curate as ki increases). For this reason, no attempt 
has been made to utilize the deviations correspond­
ing to z values greater than 1.3 (for which e' = 5e) 
in determinations of concentration-dependence co­
efficients. 

It is clear also from these results that while some 
error is undoubtedly present in 5R, this is quite 
constant throughout the measurement, and so 
cancels completely when symmetrical fringes are 
compared. This emphasizes the importance of 
the symmetrical procedure for the determination of 
differential diffusion coefficients, in that not only 
are the real effects due to non-ideality eliminated, 
but also that all consistent errors in 5R and personal 
errors in locating an interference minimum are like­
wise obviated. (The error will only cancel in the 
alternative procedure16 when the average of all 
pairs has been taken.) 

The scatter evident in the unbracketed values 
in column 11 of the table is minimized when the 
results of four exposures (all obtained during the 
last half of the diffusion time) are averaged, and the 
resulting values are shown in Fig. 2. The line, which 
represents the expected deviations, was calculated 
from equation 38 and the value for fa of —1.494 X 
10~2 obtained from the data of Gosting and Morris3 

and the value of Dc of 5.172 X 10~6 cm.2 sec.-1 

(corrected to 25.000°) given by the experiment it­
self. The value of fa corresponding to the least-
squared straight line through the points is 1.384 X 
10~2, which may be considered a reasonable agree­
ment. The value of D (similarly corrected) calcu­
lated from the Gouy fringes in this experiment was 
5.178 X 10~6 cm.2 sec. -1, which agrees better with 
the earlier results of Gosting and Morris3 (5.175) 
than the more recent results of Akeley and Gost­
ing2* (5.170). 

(b) Glycine.—In this case, both O1 and fa are 
significant, while other coefficients may be ig­
nored.4 As fa for glycine is considerably greater 
than for sucrose, the experiment provides a poten­
tially better test of the theory respecting fa deter­

minations, and accordingly it was desired to obvi­
ate the complicating effect of refractive increment 
variation; this was done in the following manner. 
From an expression relating refractive index to 
concentration {e.g., equation 6) it is possible to cal­
culate the concentration corresponding to any par­
ticular fringe if the relevant constants are known. 
Values of C so obtained may then be used in a di­
rect computation of the g{C) function (equation 2) 
from which modified "ideal displacements," z*, 
may be obtained and employed exactly as was done 
for the f{j) and z* values in the sucrose example. 
These "ideal displacements" are not true z* values 
as the latter are strictly defined only by equation 
4, whereas the definition of z * is given by the closely 
analogous relation 

g(C) = H(z*) (41) 

It will be apparent that z* and z * are identical for 
systems in which A«/ACis independent of C, when 
g{C) = f{j). By this means, the computation of the 
expected deviations in fringe position may be ac­
complished without using the U(z) function, when 
the resulting comparison between observed and 
expected deviations should constitute a more rigor­
ous check of the R{z) function. 

In the cases examined here, the experimental 
conditions have been such that Ci — 0 {i.e., diffu­
sion occurs between a solution of original concen­
tration Ci and pure solvent) and Aw/AC is linear in 
C {i.e., that a2 and all higher coefficients in equa­
tion 6 are negligible). In these circumstances, it is 
more convenient to use an expansion of the refrac­
tive index-concentration relation about W0 (the 
value corresponding to the solvent) than «5. as was 
done in 6. Thus, starting from the equation 

n = n0 + RoC[I + ai'C + ...} (42) 

the expression for the refraction increment becomes 

I l = .Ro [1 + 2a,'C + ...] (43) 

The constants Ro and a[ are readily obtained when 
experimental refraction _increment data are ex­
pressed as a function of C-30 

The solution of (42) for the concentration Cj at a 
point corresponding to a certain fringe j , where the 
refractive index is »j (thus Cj = Ci in the earlier 
nomenclature) is given by the expression 

r - "' ~ n" — ai'(n> ~ "o)2 4. j R0 ' R 0 * + " ' 

(30) A relation between ai and a', may be obtained as follows: the 
expression for the refraction increment derived from equation 6 is, 
when as is negligible 

An - r?- j -AC-Rc+ .... 

so that, from equation 43 

Rc = Ro[I + 2a/C + . . . ] 
From equation 42 

, = JL_ (d2n\ 
(tl ~ 2R1, UcVc-o 

whereas from 6 

_ J _ Zd2BN 
a i 2R5 \b&)c-c 

The two second derivatives may be equated under these conditions, 
when it follows that 

ax = fll'(1 - 2a/C + . . .) 
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-0 .4 - 0 .2 0 0.2 0.4 

Fig. 2.—Fringe deviation diagram for sucrose. Crosses 
are average experimental values, determined at four differ­
ent times. Solid line represents expected deviations on basis 
of known value of k\. 

However, using the substitution 

d «o 

(where X is the wave length and d the thickness of 
the diffusion cell along the optic axis), the calcula­
tion of separate refractive index values may be 
avoided. 

Using the values for Ra and a[ given by Lyons 
and Thomas,4 and equation 41 to obtain the 2* val­
ues, the deviation between ideal and observed 
fringe positions were thus obtained as a function of 
the parameter Ai? (z*), and are shown in Fig. 3. 
The agreement between expected deviations, as 
represented by the straight, solid line, and those 
experimentally observed is very satisfactory; the 
slope obtained by drawing the best straight line 
through the points gives ki = —2.55 X 10 -2 , which 
compares with the value of 2.45 X 1O-2 (obtained 
from Lyons and Thomas' results4) used to plot the 
solid line. The differential diffusion coefficient 
(corrected to 25.000°) obtained in this experiment 
(C = 0.6101 g./lOO ml.) was 1.045i X 10-6 cm.2 

sec. -1, while simultaneous Gouy records gave D — 
1.0458 X 10-5 cm.2 sec. The values for this 
concentration obtained from the data of Lyons and 
Thomas4 and of Dunlop31 are, respectively, 1.047g 
X 10-6and 1.0446 X 10-6Cm-2SeC.-1. 

(c) Butanol.—Lyons and Sandquist's data6 on 
butanol-water systems show that in the concen­
tration region around 0.10 M, at 25°, the coefficients 
a\, ki and &2 are likely to be significant, while Wt is 
essentially zero. In the experiment, a solution of 
butanol of concentration 0.2828 M was allowed to 
diffuse against water, giving / = 99.66, equivalent 
to An/AC value of 766.5 X 10 -6, which is in rather 
poor agreement with Lyons and Sandquist's value 
for this concentration of 761.2 X 1O-6. In order to 
use these workers' data, therefore, the mean con­
centration of the experiment was taken as C = 
0.1423 M; expressing their results about this value, 
the equations 

(fl?) X 106 = 76L2 + 1 0 1 -3( c - °'1423)- c ** °-3 0 0 6 

(31) P. J. Dunlop, T H I S JOURNAL. 77, in press. 

and 
D X 10» = 9.255 - 3.2O3(C - 0.1423) + 0.2785(C -

0.1423)2, C < 0.7001 

are obtained, from which a / = 6.782 X 10 -2, ai = 
6.651 X 10-2, h = -3 .46 i X 10-1 and h = 
3.009 X 10-2. 

-0 .6 -0 .4 -0 .2 0 
Ai?(z*). 

Fig. 3.—Fringe deviation diagram for glycine. Crosses 
are average experimental values, determined at four different 
times. Solid line represents expected deviations on basis of 
known value of ki, effects due to refraction increment varia­
tion having been eliminated. 

From these values and the values of the functions 
in Table II, it is evident that the theory predicts 
that all the second-order effects are very small, 
amounting always to less than 5 X 10~4 in (Az — 
Az*) and hence largely beyond experimental detec­
tion. This was borne out in the experiment, the 
quantity Yt being at least as constant as in the 
sucrose experiment (Table III , Column 5) for j val­
ues between 3.00 and 96.66, and it is therefore jus­
tifiable to treat the results in the manner of the 
glycine experiment, using the refractive index data 
above to enable g(C) values to be calculated from 
the/(j')'s, so that a value of ki could be determined 
from the experiment for comparison with the known 
value. The plot thus prepared showed a closely 
linear relation between the deviations and the ap­
propriate Ai?(z*) function, giving a value of k\ of 
3.213 X 10_1, i.e., about 7% lower than expected, a 
discrepancy which is probably about the magnitude 
of the experimental error for this system. 

In order to demonstrate the magnitude of the 
skewness caused by variation of the refraction in­
crement (which is a question of some interest16), 
and moreover to provide an illustration of the rigor­
ous analysis which would be required were the sec­
ond-order effects much larger, a detailed calculation 
has been made of the deviations predicted by the 
theory for the two first-order effects and the four 
second-order effects considered in the butanol ex­
periment. Some of the values so obtained are 
given in Table IV. The z* values given are those 
corresponding to some of the fringes recorded in the 
experiment (thus z* = 1.3288 corresponds to fringe 
96.66). The remainder of the table is self-explana­
tory : column 8 gives the total predicted deviation, 
from all six effects considered, for positive z* val­
ues and column 9 the corresponding deviations for 
z* taken as negative. 
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T A B L B I V 

EXPECTED DEVIATIONS" FOR BUTANOL EXPERIMENT 

1.3288 
1.1619 
0.9922 

.9048 

.7624 

.6456 

.5442 

.4530 

.3286 

.2136 

.1041 

.0682 

( 

2 

X 104 

57.4 
61.6 
66.2 
68.7 
72.5 
75.3 
77.6 
79.4 
81.5 
82.8 
83.7 
83.8 

3 

X 10 ' 

182.3 
133.0 
84.5 
60.7 
24.2 

- 2.9 
- 2 3 . 7 
- 4 0 . 1 
- 5 8 . 3 
- 7 0 . 3 
- 7 7 . 1 
- 7 8 . 4 

( 

i l l -

X 104 

- 0 . 6 
- .6 
- .6 
- .6 
- .6 
- .6 
— .5 
- .5 
- .4 
- .3 
- .1 
- .1 

O 

X 104 

3.6 
2.9 
2.4 
2.2 
1.9 
1.7 
1.5 
1.3 
1.0 
0.6 
0.3 
0.2 

6 

X IO' 

- 1 . 7 
- 1 . 2 
- 0 . 7 
— .5 
_ 2 

.0 

.0 

.0 
+ .1 

.1 

.0 

.0 

( 

7 

X 104 

- 2 . 0 
- 1 . 3 
- 0 . 9 
— .7 
- .3 
- .1 

.0 
+ .1 

.1 

.1 

.0 

.0 

S 

Total& 
for + 2 * 
X 104 

- 1 2 8 . 8 
- 74.8 
- 21.1 
+ 5.4 

45.9 
76.0 
99.3 

125.5 
138.2 
152.0 
160.4 
161.9 

Total!> 
for — s * 

X 104 

- 1 2 1 . 0 
- 68.0 
- 15.5 
+ 10.6 

50.7 
80.4 

103.3 
128.9 
141.4 
154.2 
161.2 
162.5 

" Calculated using values of au hu hi and AC given in text. b As calculated by use of equation 37. 

It may be noted that deviations produced by re­
fraction increment variation of the first order 
(column 2) are of considerable magnitude in the z* 
range considered; when the values are paired non-
symmetrically (e.g., as for the sucrose experiment) 
however, the effect is little more than one-tenth of 
the magnitude of the corresponding deviations pro­
duced by the first-order variation of the diffusion 
coefficient. Secondly, the term in ki2, like the other 
second-order effects, is very small, even though k\ is 
itself rather large. This is due to the fact, evident 
from Table II, that S(z) is a much smaller function 
than the others. 

For a rigorous calculation of Dc, it would be nec­
essary to compute all the second-order effects for, 
say, 6 or 8 s* values equivalent to fringes in the re­
gion 10-24 for J — 100. Then as all second-order 
functions change sign as z changes (thus S(z) = 
— S( — z)), symmetrical pairing of fringe measure­
ments enables the relation 

- 3 0 0 
- 0 . 4 - 0 . 2 0 

AR(z*). 
Fig. 4.—Fringe deviation diagram for butanol. Crosses 

are average experimental values, determined at four differ­
ent times. Solid line (almost linear) represents expected 
deviations on basis of known values of oi, hi and k%. 

(where the summation covers all second-order ef­
fects) to be employed and hence Dc determined. 
For the results given in Table IV, where the differ­
ence between corresponding values in columns 8 and 
9 represents twice the sum of the second-order ef­
fects, it is clear that these are negligible in this 
case, and accordingly the direct procedure for de­
termining Dc was employed, leading to the result 
(at 25.000°) Dc = 9.255 X lO"6 cm.2 sec."1, in ex­
act agreement with the data of Lyons and Sand-
quist. 

Finally, a direct comparison between the total 
calculated deviations (columns 8 and 9, Table IV) 
and those experimentally observed, after suitable 
non-symmetrical pairing, is shown in Fig. 4. The 
deviations32 have been plotted as before against 
Ai?(z*) and it is apparent firstly that the theoretical 
relationship (solid line in the figure) is still very 
closely linear, even though about 10% of the devia­
tion is produced by refraction increment variation; 
this shows that it would be quite impossible in 
practice to separate the two first-order effects. This 
behavior is to be expected from the similarity of 
form of the functions U{z) and R(z) over the range 
2 = 0-1.3. 

Secondly, it will be noticed that the theoretical 
displacement curve is shifted slightly from the ori­
gin; this is due to the second-order terms consid­
ered, which do not cancel at this point (equation 
44). Finally, it is clear from the diagram that the 
average experimental points fall very closely on the 
theoretical line, although a straight line drawn 
through them would have a slope slightly lower than 
the slope of the (linear) central part of the theo­
retical curve. 

This near coincidence of theoretical and observed 
deviations constitutes an indirect check on the ac­
curacy of the expression for U(z), when considered 

(32) I n exper iments wi th b u t a n o l - w a t e r sys t ems , it is necessary to 
h a v e t h e b u t a n o l so lu t ion above t h e water , owing t o t h e nega t ive den­
s i ty i nc r emen t of th is so lu te . As th is causes a n a t u r a l reversal of t he 
sign of S*, t h e usua l conven t ion t h a t X is measu red pos i t ive d o w n w a r d s 
has been a b a n d o n e d in this case. As ki for t h e sys t em, as defined by 
e q u a t i o n 5, is nega t ive , it has been necessary also t o reverse t he conven­
t ion concern ing t h e sign of AC, which has been t a k e n to be pos i t ive . 
Accordingly , t h e dev ia t ion g raph has t h e same form as those for sucrose 
a n d glycine. 
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together with the result, discussed previously, of 
eliminating deviations due to refraction increment 
variation, for in the one case the function has been 
used to compute part of the deviations, while in the 
other it has not. The other results, particularly 
those for glycine, go far to demonstrate the correct­
ness of the R(z) function. Experiments on more 
highly concentration-dependent solutes would be 
required for an adequate test of the second-order 
functions, as the blurring of the fringes for high 
concentration increments, discussed by Longs-
worth,16 precludes the use of high AC values. 

In the determination of concentration-depend­
ence effects, any comparison between different ap­
paratus would be of great interest, and the results 
of Longsworth16 on butanol allow an attempt to be 
made in this direction. This experiment was used 
by Longsworth in an ingenious application of the 
numerical solutions derived by Stokes33'34 for lin­
ear concentration-dependence of D, a calculation 
which represents the first use of Rayleigh diffusion 
records in this type of estimation. The result was 
obtained in terms of the ratio of the diffusion coef­
ficient at concentration C2 to that at zero concen­
tration. (When put in the form used in this paper, 
the figure (D2/D0 = 0.942) give h = -4 .44 X 
10_1, a figure, which being calculated from the total 
skewness of the observed boundary, must include 
some effect due to variation of refraction incre­
ment) . Through the kindness of Dr. Longsworth in 
making available the comparator recordings of this 
experiment, the writer was able to apply the theo­
retical treatment developed in this paper; the re­
sults obtained showed firstly that the Yt values 
were as constant as those reported in this work, the 
Dc was almost identical with that obtained by 
Longsworth, while the differences (As — As*) when 
plotted against the AR(z*) function gave a good 
linear relation, with about the same amount of scat­
ter. The slope obtained was 3.36 X 10 -2, com­
pared with the slope of 2.46 X 10 - 2 which was cal­
culated for this experiment, using Lyons and Sand-
quist's data and values of U(z) and R(z) from the 
tables, and assuming a linear relation, as before. 
Thus, as Longsworth's treatment suggested, the 
observed skewness here is rather greater than ex­
pected; it should also be pointed out that this 
experiment was performed with less than half the 
concentration increment used in the work reported 
here, so that the fringe separation measurements 
were much smaller and hence unavoidably more sus­
ceptible to error. 

Possible Anomalies in These Procedures.—It has 
always been observed, with both settings of the 
cylindrical lens (see below), that the early Ray­
leigh pictures (i.e., those taken up to about •s/Tit = 

(33) R. H. Stokes, Trans. Faraday Soc, 49, 887 (19S2). 
(34) An interesting point emerges from a comparison of Stokes' re­

sults with the treatment developed here: thus Stokes found that in all 
cases of linear dependence of D upon C, the concentration-distance 
curves had a common point at which they coincided with the ideal, 
non-concentration-dependent curve. This occurred at z = ±0.66, 
and it is noteworthy that the zeros of the R(z) function (corresponding 
to the points at which the concentration is unaffected by linear varia­
tion of D) occur at s = ±0.657. It may be shown also that if Fujita 
and Gosting's result (equation 7 of this paper) is expressed in the forms 
used by Stokes, values of the "relative concentration" may be obtained 
which are very close to those in Stokes' Table 2. 

0.1 cm.) showed appreciably less skewness than the 
later ones. For this reason, the estimates of con­
centration-dependence reported here have all been 
determined from exposures obtained during the 
last half of the experiments, when no drift of the 
Az values with time could be observed. An entirely 
similar effect was observed with the records of 
the butanol experiment performed by Dr. Longs­
worth. Although anomalies of this type might 
well be due to small imperfections in the cylindrical 
lenses, being most easily observed when the lens 
is used at high aperture (corresponding to early 
diffusion photographs) and negligible at low aper­
ture (later diffusion photographs) it seems probable 
that the effect is real in the sense that it is due to 
those aberrations of the optical system which have 
recently been considered by Svensson.85'86 For the 
type of optical system used here, where the cylindri­
cal lens unit is focused on the geometrical center of 
the cell, Svensson found a finite correction to the 
equation for the path difference between the solution 
in the cell and the reference solution (bath-water in 
this case). This correction (equation 41 and Table 
II of reference 35) varies linearly with the square 
of the refractive index gradient, and so would be 
inversely time-dependent; moreover its effect 
would be greatest for the central fringes in a Ray­
leigh interferogram, which would undergo a shift 
quite independent of any concentration-dependence 
effect. From the equation cited, it appears that the 
central fringes in the sucrose experiment should suf­
fer a displacement, relative to the outer fringes 
with which they are compared in Fig. 2, of approxi­
mately 14 X 10~4, at the time of the earliest ex­
posure used in the computations (8535 sec). This 
aberration drops to about 8 X 1O-4 for the last ex­
posure used: the sign of the corrections is such as to 
increase the magnitude of the observed skewness, 
so it is possible that part of the small discrepancy 
between the observed and calculated values of ki 
in this case may be ascribed to the operation of the 
effect. The time-variation of this aberration, 6 X 
10~4, is so small that it would be obscured by the 
natural scatter of the results; only in the case of the 
sucrose experiment is the effect87 of significant 
magnitude. 

Comparison of Gouy and Rayleigh Results.—On 
the basis of the theory outlined in this paper, dif­
ferential diffusion coefficients obtained with the 
Rayleigh method should be identical with the 
Gouy values from the same experiment whenever 
the second-order effects are negligible. However, it 
is evident that the Gouy results for the sucrose and 
glycine experiments described are approximately 
0.1% higher than the Rayleigh values, and a dis­
crepancy of this magnitude has been observed con­
sistently throughout the series (the mean discrep­
ancy for six experiments, in most of which sucrose 

(35) H. Svensson, Optica Acta, 1, 25 (1954). 
(36) H. Svensson, ibid., 1, 90 (1954). 
(37) The procedure used by Svensson36 in an experimental test of the 

theory of these aberrations apparently involved the assumption that 
the position of the maximum refractive index gradient, in the diffusion 
of 2% sucrose against water, does not vary with time; it may be 
shown from Fujita and Gosting's theory that, in fact, this ordinate 
undergoes a displacement which, though small in comparison with the 
optical length d of the cell, is first order in (ki,&C), and so should per­
haps be considered. 
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was the solute, was 0.12%). As the constants in 
the equation used for calculating Gouy values are 
independent of any lens characteristics and, more­
over, the theoretical basis of the determination has 
been so rigorously examined,3'8'27'38 the Gouy val­
ues are to be taken as the more reliable. The cause 
of the small error in the Rayleigh values is as yet 
undetermined: it cannot be due to aberrations of 
the type considered by Svensson,36 for such dis­
placement errors will cancel when the fringes are 
compared symmetrically. I t seems unlikely also 
that it can be ascribed to direct errors in the mag­
nification {vide the discussion in the experimental 
section) although this is the most obvious source of 
error. There seems to be no doubt that it is cor­
rect to focus the geometrical center of the cell in the 
camera plane.27'36'36 

In the absence of such direct errors, and accept­
ing the above conclusion as to the identity of Gouy 
and Rayleigh values, it is necessary to postulate an 
anomaly arising from the fact that, in the deter­
mination of the magnification, somewhat different 
demands are made upon the cylindrical lens from 
those concerned in the recording of the interfero-
grams. Thus in the latter case, it appears that 
light traversing the center of the diffusion boundary 
will be largely restricted to the lower half of the 
lens, whereas in the former case, all parts of the 
lens are used more or less equally. Although no in­
dependent evidence for the existence of lens imper­
fections or errors of mutual alignment has been 
found (apart from the variable skewness at early 
times discussed above) further weight is given to 
this possibility by observations made in an earlier 
series of measurements, when one of the two cylin­
drical lenses was inverted (relative to the orienta­
tion employed throughout this work), but the 
focusing procedure was otherwise identical. In 
this case, the diffusion results obtained showed a 
consistent discrepancy from the Gouy values re­
corded in the same experiment of +0 .3%, although 

the apparent skewness was of the correct order, and 
no other anomalies were evident. Whatever the 
true origin of this minor discrepancy may be, it 
does serve to emphasise the difficulty of accurate 
alignment and focusing of a pair of cylindrical 
lenses of such long focal length. 

In assessing the reliability of the apparatus in its 
present form, three criteria may be considered im­
portant. These are (a) the constancy of Yt values, 
(b) the correct prediction of observed skewness, and 
(c) the accuracy of the differential diffusion coef­
ficients. As the apparatus clearly meets the first 
two requirements (both of which, it may be noted, 
are independent of the particular value of the magni­
fication), the slight anomaly in the third has been 
ignored, and it is therefore concluded that the ap­
paratus, when used with the precautions outlined 
in this paper, does at least meet the minimum re­
quirements for Rayleigh diffusion experiments; it 
is to be regretted that no conclusion can be drawn 
from this work as to the identity or otherwise of 
diffusion coefficients obtained with the two optical 
systems considered. 
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